Characterization of In-Situ Cu–TiH2–C and Cu–Ti–C Nanocomposites Produced by Mechanical Milling and Spark Plasma Sintering
نویسندگان
چکیده
This study focuses on the fabrication and microstructural investigation of Cu–TiH2–C and Cu–Ti–C nanocomposites with different volume fractions (10% and 20%) of TiC. Two mixtures of powders were ball milled for 10 h, consequently consolidated by spark plasma sintering (SPS) at 900 and 1000 ◦C producing bulk materials with relative densities of 95–97%. The evolution process of TiC formation during sintering process was studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). XRD patterns of composites present only Cu and TiC phases, no residual Ti phase can be detected. TEM images of composites with (10 vol % TiC) sintered at 900 ◦C show TiC nanoparticles about 10–30 nm precipitated in copper matrix, most of Ti and C dissolved in the composite matrix. At the higher sintering temperature of 1000 ◦C, more TiC precipitates from Cu–TiH2–C than those of Cu–Ti–C composite, particle size ranges from 10 to 20 nm. The hardness of both nanocomposites also increased with increasing sintering temperature. The highest hardness values of Cu–TiH2–C and Cu–Ti–C nanocomposites sintered at 1000 ◦C are 314 and 306 HV, respectively.
منابع مشابه
Fabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering
Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...
متن کاملFriction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering
Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...
متن کاملFriction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering
Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...
متن کاملInvestigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying
In this paper, Cu-Ti nanocomposite synthesized via ball milling of copper-titanium powders in 1, 3, and 6 of weight percentage compounds. The vial speed was 350 rpm and ball to powder weight ratio kept at 15:1 under Argon atmosphere, and the time of milling was 90 h. Obtained powders were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS)....
متن کاملMicrostructure of spark plasma sintered TiB2 and TiB2–AlN ceramics
In this research study, the effects of aluminum nitride (AlN) additive on the densification behavior and microstructure development of titanium diboride (TiB2) based ceramic matrix composite were investigated. In this way, a monolithic TiB2 ceramic and a TiB2–5 wt% AlN ultrahigh temperature ceramic composite were fabricated by spark plasma sintering (SPS) proces...
متن کامل